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Abstract: We discuss some of the implications of simulating QCD when the action used

for the sea quarks is different from that used for the valence quarks. We present exploratory

results for the hadron mass spectrum and pseudoscalar meson decay constants using im-

proved staggered sea quarks and HYP-smeared overlap valence quarks. We propose a

method for matching the valence quark mass to the sea quark mass and demonstrate it on

UKQCD clover data in the simpler case where the sea and valence actions are the same.
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1. Introduction

Solving lattice QCD to high precision requires the use of light dynamical quarks. Ginsparg-

Wilson fermions have the correct chiral and flavour symmetries. However, they are compu-

tationally expensive compared to improved staggered quarks. In the Nf = 2 + 1 improved

staggered programme the square root of the fermion determinant is employed to reduce

the number of dynamical flavours from four to two for the up and down quarks, and the

fourth root is taken to reduce the number of flavours from four to one for the strange

quark [1]. Ensembles of gauge field configurations are then generated with these fractional

power determinants as weight factors. There is no known local action to which this model

corresponds. We define a mixed action as one where the action used to generate the ensem-

ble of gauge configurations, or sea quark action, is different from the valence quark action

used to determine hadronic observables on those configurations. Current Nf = 2 + 1 im-

proved staggered simulations have a mixed action because the four-flavour staggered Dirac

operator is used to generate the valence quark propagators rather than a local operator

equivalent to that used in the ensemble weight. Unless a local operator can be found such

that

detDlocal ≡ (det{Dst +m})1/2 (1.1)

mixed actions are inevitable in the improved staggered programme. The Chebyshev poly-

nomial approximation to the square root of (Dst + m) is not the required operator as it

has been shown to be non-local [2, 3, 4]. That (Dst + m)1/2 is non-local does not imply

that Dlocal does not exist, but serves as a warning, since the obvious candidate for such an

operator fails.

In the rest of this paper we assume that some Dlocal exists so that the improved

staggered ensembles are generated with an action in the same universality class as QCD.

We consider the case where the valence quark action is manifestly different from that
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of the sea and we choose the valence action that has the best chiral properties, that is,

overlap valence quarks on an improved staggered sea. In [5] a local Symanzik action

and the corresponding low-energy chiral effective Lagrangian are constructed for a general

Ginsparg-Wilson valence action with Wilson sea quarks. Some of their considerations apply

to more general mixed actions and, in particular, to overlap valence quarks on a staggered

quark sea [6].

Neuberger’s overlap operator [7] is given by

Dov(µ) =
1

2
[1 + µ+ (1 − µ) γ5ǫ(HW(−ρ))] (1.2)

where HW, is the Hermitian Wilson operator

HW(−ρ) = γ5DW(−ρ) (1.3)

with mass parameter 0 ≤ ρ ≤ 2, and ǫ(HW) is the matrix sign function of HW. The mass

parameter µ is related to the bare quark mass amq through

µ =
amq

2ρ
(1.4)

although we will ignore this below and write Dov(m0). The expectation value of some

observable O in a model where the ensemble has been generated as 2 + 1 flavours of

staggered quarks, with overlap valence quarks is

〈O〉 =
1

Z

∫

DU (det {Dst[U ] +mud})
1/2 (det {Dst[U ] +ms})

1/4 e−Sg[U ] (1.5)

×O

[

δ

δη̄i
,
δ

δηi
, U

]

e−η̄i{Dov [U ](mi)}
−1ηi

∣

∣

∣

η̄i=ηi=0
,

where U are the gauge fields, Z is the partition function, {η̄i, ηi}, i = 1, · · · , Nf , are the

valence quark sources and Sg is the gauge action. Dov is positive and bounded from below

by the valence quark masses mi, assuming mi > 0. The expectation values are equal to

those of a local field theory with action given by

S = Sg[U ] +
∑

l=ud

χ̄l (Dlocal[U ] +mud)χl + χ̄s (Dlocal[U ] +ms)χs (1.6)

+
∑

i

q̄iDov[U ](mi)qi + φ+
i Dov[U ](mi)φi

where the χ fields are the one-component staggered sea quark fields, and the q fields are

the overlap valence quark fields. The φ fields are pseudofermion sea fields introduced to

cancel the determinant of the overlap operator [8]. For practical purposes the model can be

regarded as having an exact SU(Nf |Nf )L ⊗SU(Nf |Nf )R ⊗U(1)V symmetry when mi = 0

for i = 1, · · · , Nf [9]. Restricting to transformations only in the valence quark sector, the

infinitesimal chiral rotation is given by

δq = iǫτγ5

(

1 −
1

2
Dov

)

q (1.7)

δq̄ = iǫq̄

(

1 −
1

2
Dov

)

γ5τ
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and possesses the correct U(1)A anomaly and an index theorem.

For Nf = 3, this model is in the same universality class as QCD when the sea and

valence quark masses are matched. At non-zero lattice spacing, the separate chiral symme-

tries for sea and valence quarks ensure that the lightest pseudoscalar meson mass vanishes

at mval = msea = 0. This implies that the bare quark masses are related by

mval = ζ(a)msea (1.8)

where ζ → 1 as a→ 0. To dateNf = 2+1 simulations with staggered valence and fractional

determinants of the staggered sea [1] have set ζ(a) = 1. However, it is not obvious that

this is the appropriate mat‘ching condition for overlap valence quarks on a staggered sea

(or, for that matter, for staggered valence quarks).

1.1 Matching the quark masses

To match the sea and valence quark masses to their experimental values one would have

to find an experimentally known hadronic state whose mass depends strongly on the sea

quark mass. In principle, the η′ is one such hadron. The sea quark mass could be tuned

until the η′ has the correct experimental mass, whilst tuning the valence quark mass of the

flavour non-singlet pseudoscalar meson to the pion. In practice, this is rather difficult, as

the η′ requires very high statistics calculations. An alternative would be to relate the bare

sea and valence quark masses to each other via equation (1.8), and then tune the flavour

non-singlet mesons to their experimental values in the usual way.

When the sea quark mass is infinite, i.e. quenched, then Bardeen et al. [10, 11] have

demonstrated numerically that the model violates unitarity. We extend this analysis for

finite sea and valence quark masses and show the same unitarity violation occurs when

mval < msea. Our results suggest a criterion for matching the sea and valence quark

masses. The quark masses can be tuned by varying the valence quark mass to see when

these partially quenched pathologies appear for a given sea quark mass. This determines

when the valence quark is lighter than the sea quark.

Bardeen et al. [10, 11] show that the scalar correlator,

CSS(t) =
∑

~x

e−~p·~x〈ψ̄(x)ψ(x)ψ̄(0)ψ(0)〉 (1.9)

is sensitive to this quenched pathology, because it couples to an η′ − π intermediate state.

Shown in figure 1 are two of the diagrams which contribute to the η′ propagator. Diagram

a), the “hairpin”, has a negative coefficient. In full QCD, diagram b), with a series of vac-

uum bubbles, cancels the effect of the hairpin diagram, so there is no negative contribution.

In quenched QCD, only the hairpin diagram contributes, so the intermediate η′ − π state

couples with a negative spectral weight. This gives the scalar correlator a negative value.

In partially quenched QCD the situation is more complicated. The bubble in diagrams

b) depends only on the sea quark mass, whereas the connected quark-flow lines depend only

on the valence quark mass. Heuristically at least, the size of the contribution from diagrams

b) can been thought of in the following way. When the sea quark mass is smaller than

– 3 –



a) b)

Figure 1: Quark-flow diagrams contributing to the η′ propagator.

the valence quark mass, diagrams b) have a larger positive contribution than the negative

contribution from diagram a). When the sea quark mass is heavier than the valence quark

mass, diagram b) has a smaller contribution than a), which means the η′ − π intermediate

state couples to the scalar correlator with a negative weight. By monitoring the sign of the

scalar correlator as the valence quark mass is varied it should be possible to match the sea

and valence quark masses.

To demonstrate this method, we examined the scalar correlator on the UKQCDNf = 2

clover data sets [12, 13], where the sea and valence quarks have the same action. So whether

the valence quark mass is heavier or lighter than the sea is known. This data was generated

with the Wilson plaquette gauge action and the clover quark action, where the coefficient of

the Sheikholeslami-Wohlert term [14] was determined non-perturbatively [15]. For all data

sets β = 5.2 and the volume is L3×T = 163 ×32. The values of the hopping parameter for

the sea and valence quark masses, and the number of configurations are shown in Table 1.

The relatively poor signal-to-noise ratio for the scalar correlator implies the need for

a large number of configurations. To improve the statistical resolution, we used a ratio

of correlation functions, as the statistical fluctuations are correlated. In particular, we

considered the ratio

R(t) =
CPP (t) − CSS(t)

CPP (t)
(1.10)

where PP denotes the pseudoscalar correlator. At large times

lim
t→T/2

R(t) = 1 −
ASS

APP

e−mSt + e−mS(T−t)

e−mP t + e−mP (T−t)
. (1.11)

At the mid-point of the lattice

R(T/2) = 1 −
ASS

APP
e−∆mT/2 (1.12)

where ∆m = mS −mP is the mass splitting between the scalar and pseudoscalar states.

For a large enough lattice time extent, T , this ratio tends to unity at the mid-point.

However, when the valence quark mass is lighter than the sea quark mass, the η′ − π

state couples to the scalar correlator with a negative weight. Furthermore, this contribution

does not fall exponentially with time, and so it is not exponentially suppressed by the mass

splitting between the pseudoscalar and scalar states. Thus, a signal for the valence quark

mass being lighter than the sea is R(t) > 1. Figure 2 shows the ratio for different sea and

valence quark masses. The open circle and filled square both have the sea and valence

quark masses equal, and R tends to unity at large times. For the filled circles, R > 1 at
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large times at the 2σ level, a signal for partial quenching, and indeed this data set has

mval < msea. This effect is clearly dependent on the sea quark mass, as the open and filled

circles both have the same valence quark mass.

7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
t

0.95

0.96

0.97

0.98

0.99

1

1.01
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1.03

R
(t

)

κ
sea

=0.1355 κ
val

=0.1355
κ

sea
=0.1350 κ

val
=0.1355

κ
sea

=0.1350 κ
val

=0.1350

Figure 2: R(t) in equation (1.11) versus Euclidean time, t.

κsea κval Nconfig mval : msea ASS/APP

0.1340 202 > 0.6(1)

0.1345 202 > 190(50)
0.1350

0.1350 202 = 0.0(2)

0.1355 202 < −0.00015(5)

0.1350 208 > 1.2(2)
0.1355

0.1355 208 = 0.0(1)

0.1355 141 > 1.5(5)

0.1365 0.1365 141 = 5.0(10)

0.1380 141 < −0.00014(14)

0.1365 137 > 0.06(4)

0.1380 0.1380 137 = 0.0(1)

0.1395 137 < −0.003(2)

Table 1: UKQCD dynamical clover (Nf = 2) data sets for β = 5.2.

Also shown in Table 1 is the result of fitting equation (1.11) to the data. Clearly the

ratio ASS/APP is not a very well-determined quantity. However, it seems clear that this

ratio being negative is a signal at the 1 − 2σ level that the data is partially quenched.
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Figure 3 shows both the scalar correlator and the ratio (1.11). At lighter quark mass

and with fewer configurations, the fit results become rather dependent on the fit range

chosen, but combining the fit information and examining these plots, it is clear that for

κsea = 0.1356, κval = 0.13580 there is a signal for the negative weight state, and for

κval = 0.1356 this signal is absent.

6 8 10 12 14 16 18 20 22 24 26 28
time

0.9

0.95

1

1.05

1.1

R
(t

)

κ
VAL

=0.13580
κ

VAL
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κ
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=0.13550

6 8 10 12 14 16 18 20 22 24 26 28
time

-0.001

-0.0005
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0.0005

0.001

0.0015

C
SS

(t
)

Figure 3: R(t) and CSS(t) versus t for κsea = 0.1365.

A precise matching of the sea and valence quark masses will be difficult to achieve,

because the signal for the scalar ground state at large times for light quarks seems to

disappear into the noise. When the valence quark mass is lighter than the sea, the signal

for the negative weight η′ − π state is fairly strong. However, our results suggest that it is

possible, in principle, (equivalently with very high statistics) to match the valence and sea

quark masses. This is necessary to make sense of simulations with mixed actions when at

least one of the sea or valence quark masses is outwith the chiral regime and matching to

chiral perturbation theory is problematic.

2. Overlap valence quarks on a staggered sea

We have performed an exploratory study of overlap valence quarks on the MILC Nf =

2 + 1 improved staggered configurations [16]. We measure the simplest states of the light

hadron spectrum, mesons and baryons, and the pseudoscalar decay matrix element for
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both light and heavy-light states. Due to a lack of computational resources, the number of

configurations analysed was small, which prevented any realistic attempt at matching the

sea and valence quark masses as described in the previous section.

2.1 Smearing

The overlap operator is only local for gauge configurations which are “smooth enough” [17].

The MILC configurations we used have a lattice spacing of a ∼ 0.125 fm and so are relatively

coarse. Smoothing the gauge configurations should improve the localisation of the overlap

operator. Moreover, smoothing the gauge fields by “HYP-smearing” [18] can improve

the spectral properties of the Wilson-Dirac operator [19], which reduces the amount of

computation required in the solver used to apply ǫ(HW). Indeed, HYP-smearing the gauge

configuration does speed up the inversions. Furthermore, the low-lying eigenvalues of the

staggered operator “mimic” the eigenvalue spectrum of the overlap operator when the

configurations are smoothed in this way [20, 21, 22] suggesting that a smoothly behaved

matching condition may exist for light quark masses.

To examine the effect of multiple iterations of HYP-smearing, we studied the quark-

antiquark potential on 624 quenched UKQCD configurations at β = 5.93 with a volume of

163 × 32. The smearing parameters used were α1 = 0.75, α2 = 0.60, and α3 = 0.35 [18].

Planar Wilson loops were used to extract the quark-antiquark potential, which was fitted

to

V (r) = V0 + σr −
κ

r
(2.1)

Figure 4 shows the effect of multiple iterations of HYP-smearing on the string tension, σ.

Repeated HYP-smearing quickly altered the short-distance behaviour, while the medium-

to-long distance behaviour remained relatively unchanged for a small number (. 3) of

iterations. The effect on the potential of smoothing configurations has been studied many

times before, following the work of Teper [23], and recently an extensive study for different

actions and different smearings has been carried out [24]. Our limited study agrees with

these previous results.

2.2 The light hadron spectrum

The overlap propagator calculations were performed on ten configurations from each of

two ensembles produced by the MILC collaboration [16]. One ensemble has ams = 0.05,

aml = 0.03 and the other has ams = 0.05, aml = 0.02. Both have a lattice spacing

a ≃ 0.125 fm and linear size L ≃ 2.5 fm. Three iterations of HYP-smearing were applied

to each configuration. The overlap operator from the SZIN code [25] was then used to

calculate propagators. These were created with seven different valence quark masses using

the overlap multi-mass solver: four light and three heavy [26]. Some of these results have

been previously reported in [27].

We performed simultaneous fits to three different correlators in order to extract the

pseudoscalar meson mass (see figure 5). The fluctuations in the effective mass are larger

than the apparent statistical errors, but this is probably due to underestimation of the

variance on ten configurations.
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Figure 4: The effect of HYP-smearing on the long-range potential as measured by σ.

A partially quenched analysis was carried out, that is the sea quark mass was held

fixed whilst varying the valence quark mass. Since we had multiple input valence masses,

non-degenerate meson correlators could be constructed. Shown in figure 6 is the two-

dimensional fit performed to (aMPS)2 versus valence masses mq1
and mq2

, which allowed

evaluation of the average u and d quark mass, m̂, from

M2
π = B (mq1

+mq2
) +A = 2Bm̂+A (2.2)

where Mπ is the physical pion mass. This in turn allowed us to evaluate the strange quark

mass, ms, from

M2
K = B (ms + m̂) +A (2.3)

where MK is the physical kaon mass.

We also determined the masses of the nucleon and delta baryon. The signal for the

nucleon mass is very clean. Figure 7 shows the effective mass of the nucleon for the two

operators

N1(x) = εijk(ψ
T
i Cγ5ψj)ψk (2.4)

N2(x) = εijk(ψ
T
i Cγ4γ5ψj)ψk.

It is remarkable that we can see a signal for the negative parity partner of the nucleon on

as few as ten configurations. This suggests that, despite their relative cost per propagator
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Figure 5: Pseudoscalar meson effective mass and simultaneous uncorrelated fit to three correlators

(P = q̄γ5q, A4 = q̄γ4γ5q). The squares and diamonds are slightly offset horizontally for clarity.

compared with staggered quarks, overlap valence quarks maybe the most cost effective way

to extract precision light baryon physics from improved staggered configurations.

Figure 8 shows the nucleon (upper plot) and decuplet (lower plot) masses versus the

pseudoscalar meson mass squared. The lines are uncorrelated linear fits to the data. The

values calculated by the MILC collaboration [16] on their corresponding full ensembles

are shown by open symbols. Both the nucleon and decuplet baryon masses from the

overlap operator are significantly lower although, a priori, we don’t know how to match

the horizontal scales. The cut-off effects for the different formalisms will be different and,

unless the matching function in equation (1.8) is very different from one, this suggests that

the cut-off effects for the overlap baryons are be smaller. The nucleon mass shows some sea

quark mass dependence, but the decuplet mass shows no variation. With ten configurations

and relatively heavy sea quark masses, any trend is hard to spot. In the lower plot, the

vertical dashed-dotted line shows the estimate of the ηss̄ mass squared, as measured by

the overlap operator on these configurations. The horizontal dotted line is the physical Ω−

mass in lattice units. Within large statistical uncertainties, this determination of the Ω−

mass at fixed lattice spacing agrees with the experimental value. Again, this may suggest

that cut-off effects with overlap fermions are smaller than with staggered fermions, but,

with data at only one lattice spacing, this remains speculation.

The pseudoscalar decay constant, fPS, is defined as

fPS =
ZA〈0|A4|PS〉

MPS
. (2.5)
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Figure 6: The square of the pseudoscalar meson mass vs bare overlap quark mass.

We obtain ZA from the axial Ward identity

ZA〈∂µAµO〉 = 2mq〈PO〉 (2.6)

which we can express in terms of the pseudoscalar correlator, CPP , and the pseudoscalar

axial correlator, CPA4
. 〈0|A|PS〉 cancels in equation (2.5) and hence we require only CPP

to compute a renormalised fPS. Once again, we performed a 2-d linear fit to the light

non-degenerate pseudoscalars to calculate fPS (see figure 9) and extracted the ratio of

fK/fπ (see table 2). The value increases slightly with decreasing light sea quark mass in

the right direction to agree with experiment. This is also evident from the slight change of

the gradient with sea quark mass in figure 9.

Sea Quarks fK/fπ fDs (MeV)

amsea = 0.03/0.05 1.03(3) 226(14)

amsea = 0.02/0.05 1.08(4) 232(11)

Experiment [28] 1.22(1) 266(32)

Table 2: Pseudoscalar meson decay constants.

2.3 Charm Physics

Heavy quark propagators essentially come for free in the overlap propagator calculation

through the use of a multi-mass solver. However, lattice artefacts are O(amq)
2 and the
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Figure 7: Nucleon effective mass for the heavier sea quarks, with amq = 0.056 (equation 1.4). The

square symbols show the negative parity excitation.

heaviest input valence quark mass used is amq = 0.84, so (amq)
2 ∼ 0.7. With the lattice

spacing of a−1 ∼ 1.5GeV, the calculation is at best on the limit of simulating charm. Due

to the rapid decay in Euclidean time, we require double precision. However, this does

not slow the solver down appreciably, as we need substantially fewer re-orthogonalisations

against the projected eigenvectors of HW in the linear solver than in single precision.

These heavy quark propagators were used to calculate fDs (see table 2). The value

of fDs increases with decreasing light sea quark mass, in the direction of the experimental

value, as can be seen from the change of gradients in figure 10.

The short distance behaviour of the potential has been altered by repeated smearing.

As heavy quarks in quarkonium feel the short distance potential, this repeated smearing

may be a source of worry. Indeed, examining the heavy-heavy correlator for the heaviest

quark mass we do not see the effective mass reaching a plateau. It might be expected that

a heavy-light state feels the effect of the short distance potential less. Indeed the effective

mass for the heavy-light correlator reaches a plateau. This suggests that the heavy-light

states are not suffering so much from the modified short-distance behaviour. In future

work we anticipate using fewer iterations of smearing.

3. Conclusions

While staggered quarks offer the most cost effective way of simulating light dynamical

quarks today, they require us to use a mixed action formulation of QCD. Outside the chiral

– 11 –



0 0.05 0.1 0.15 0.2 0.25

(aM
PS

)
2

0.8

0.9

1

1.1

aM
3/

2

(aM
PS

[ss])
2

0.5

0.6

0.7

0.8

0.9

1

1.1

aM
N

am
sea

=0.02/0.05
am

sea
=0.03/0.05

physical states

aMΩphys

Figure 8: The nucleon and decuplet baryon mass versus (aMPS)2 for the two ensembles. The open

symbols show the baryon masses measured on the full ensemble with staggered valence quarks [16].

regime of both valence and sea quarks, it is necessary to implement a matching procedure

for the quark masses for the model to be in the same universality class as QCD. (Within the

chiral regime, the partially quenched results may be matched to chiral perturbation theory

and thence to QCD low energy constants.) Indeed, we show numerically that the partially

quenched theory withmval < msea has similar negative metric pathologies to those observed

by Bardeen et al. in quenched QCD. In principle, this observation provides a matching

condition, but, just like the alternative approach of determining msea by matching a flavour

singlet quantity to experiment, suffers from poor signal-to-noise in practice. Despite these

practical problems with matching, we obtain encouragingly good signals for flavour non-

singlet hadron masses and decay constants using overlap valence quarks on a staggered sea

quark ensemble. The potential gain from the simplicity of valence quarks with the correct

flavour and chiral symmetries, together with the clean statistical signals, particularly for

baryons, is good motivation for trying to improve on our exploratory attempts to match

valence and sea quark masses.
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